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Preface
�is article reflects my thoughts concerning 

a Christian approach to mathematical modeling. 
Often within the community of mathematical 
modelers, little thought is given to the interplay of 
faith and modeling. Typically the focus of a modeler 
is on solving a problem or answering a question. 
From a purely mathematical viewpoint, making a 
model is thought of as an intellectual exercise with 
few ramifications. From an applied mathematical 
point of view, it is realized that models may have 
far-reaching effects if they are adopted and used. 
My first purpose in writing this article is to show 
that for both cases (an intellectual exercise or an 

applied mathematical model), it is important for 
a Christian to understand the assumptions and 
limitations of mathematical modeling.  My second 
purpose is to present an article that is accessible 
to undergraduates interested in mathematical 
modeling so that they can learn not only about the 
basis of modeling but also about the interaction of 
faith and modeling.

Introduction
In the novel Polar Shift,1 authors Clive Cussler 

and Paul Kemprecos build an exciting adventure 
around a fictitious set of theorems by Kovac. �ese 
theorems provide the scientific basis for extreme 
manipulation of natural phenomena. Examples 
include inducing rogue ocean waves and massive 
whirlpools in the open ocean as well as reversing 
the polar magnetic fields. �e book mixes popular 
scientific ideas with imagination and computer 
simulations to produce a highly entertaining 
thriller novel.

Implied in this stimulating book is a 
mathematical model that describes a natural 
resonance phenomenon. �rough computer 
simulations using theorems and scientific 
constructs, the villain acquires the ability to 
manipulate forces within nature that are normally 
thought to be outside the influence of mankind. 
Even the heroes of this story rely on theorems 
and computer simulations to save the day. �is 
idea is not as far-fetched as it may sound; for 
example, electromagnetic waves were discovered 
through mathematical equations, and the use of 
electromagnetic waves has transformed the world 
over the last century and a half, according to Morris 
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Kline.2 What I find of particular interest is the 
idea that the knowledge not only of mathematical 
theorems but also of computer simulation of 
mathematical models implies power. 

Using mathematics to understand and direct 
nature is not a new idea; it has proved very successful 
in areas of physics, engineering, chemistry, and 
other “hard” sciences. More recently, mathematical 
models have been applied to life sciences, biology, 
economics, and environmental science, etc. With 
the rise and availability of increasing computing 
power, computerized simulations are extending the 
reach of mathematical models. �e subject I wish 
to explore is the process and basic assumptions of 
mathematical modeling.

What is mathematical modeling?  It is using 
mathematics to understand some aspect of a non-
mathematical entity. For illustrative purposes 
we will refer to the non-mathematical entities as 
things in the ”physical world.” �e term “physical 
world” should not be limited to the world of 
atoms. For our purposes, it also includes other non-
mathematical entities, such as social phenomena.  
�e “mathematical world” is where mathematical 
results are derived. Rather than get bogged down 
in what or where these worlds are, we will assume  
an intuitive understanding of what is meant by 
“mathematical world” and “physical world.”

2 Foundations
�e thrust of mathematical modeling is to use 

mathematics to understand the physical world; 
however, we begin by considering how the physical 
world informs mathematical knowledge. �is 
connection  is important since  (1) it illustrates the 
basis for the certainty of mathematical knowledge, 
(2) it illustrates the interplay between the 
mathematical world and the physical world, and (3) 
it provides a basis for the correspondence between 
the mathematical world and physical world. All 
are important for mathematical modeling.

2.1 Mathematics and Certainty
One often–quoted reason for studying 

mathematics is its certainty.  But how does 
mathematics increase our plan’s certainty level?  
We will answer this question by considering the 
concept of consistency. If a system is inconsistent, 
its level of certainty is greatly reduced. We shall see 
that the certainty within a mathematical system 

is informed by physical models, the main point 
being that mathematical certainty should be based 
on God’s providential and sustaining hand in 
creation. 

A mathematical system is consistent if there 
are no contradictions possible within it. �at 
is, no conceivable statement in the system can 
be shown to be both true and false at the same 
time. If a contradiction or paradox 3 appears, the 
underlying assumptions of the system (axioms) 
are re-evaluated, leading either to an explanation 
of the paradox or a modification to eliminate the 
contradiction. Contradictions in a mathematical 
system are disastrous. If a contradiction appears, 
all results collapse like a house of cards! 

How can one be 100 percent certain that 
contradictions will not appear?  It turns out that we 
can never be completely certain. After all, showing 
the veracity of all possible derived statements, even 
those not yet conceived, is a tall order. However, 
using physical models, we can gain assurances of 
system consistency without knowing all possible 
statements.

I will illustrate this point with three-point 
geometry. �e axioms of three-point geometry are 
as follows: 

A1: �ere exist exactly three points. 
A2: Any two distinct points are contained in 

exactly one line. 
A3: No line contains all points. 
A4: Any two distinct lines contain at least one 

point in common. 
A theorem, or truth, in this system is the statement 
that “Two distinct lines contain exactly one point in 
common.” �is statement differs from axiom A4, 
since axiom A4 allows more than one point in 
common. (Note the word exactly in the theorem.) 
Here is the reasoning that establishes the theorem: 
By axiom A4, there must be at least one common 
point contained in both lines, so there cannot be 
distinct lines with no points in common. Suppose 
that there is more than one common point 
contained on both lines. �en the two lines must 
have at least two points in common. According 
to axiom A2, those two points determine exactly 
one line. So our “lines” must be a single line. �is 
finding contradicts the assumption that we started 
with two distinct lines, so there cannot be more 
than one point in common.

Consider another statement: “!ere are exactly 
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three lines.” �is truth depends on all four axioms, 
and its argument is more complicated. Statements 
that can be proved true from the axioms of the 
system are called theorems. A collection of a 
method of reasoning, of axioms, and of provable 
theorems is called an axiomatic system. Axiomatic 
systems are the organizational standard for 
mathematical knowledge. An axiomatic system, 
and thus mathematical knowledge, can have 
realizations.

Perhaps in your mind you envisioned, or better 
yet attempted to draw, a picture of the axioms of 

three-point geometry when you first read them. A 
common one, where all the axioms hold, is that of 
a triangle. �e points are vertices, and connections 
between vertices are the edges of the triangle. It is 
easy to determine that all four of the axioms are 
true in a drawing of a triangle. A triangle is said to 
be a model of the three-point geometric axiomatic 
system described above.

We define a model to be any physical 
realization of the system where all the axioms 
hold.4 In the model of three-point geometry, you 
can see that the two theorems mentioned above 
are true. Two distinct lines do have a single point 
in common, and there are exactly three lines. 
�e mathematical claim is that everything that 

is true in the mathematical system must also be 
true in the model. �e model may contain other 
truths that are not in the mathematical systems. 
For example, your model may have information 
concerning the length of edges. �e axioms A1 to 
A4 have no information about length. Elements 
of a model often suggest new assumptions for the 
mathematical system. For example, if the lengths of 
edges were used to define distance between points, 
then theorems about distance could be stated.

It is important to realize that use of the word 
model above is different from the typical use. 
Here, the model may be bigger and more complex 
than the mathematical system. What makes it a 
model is that the axioms of the system hold in the 
realization. 

How does a physical model, like that of 
a triangle for three-point geometry, establish 
the consistency of three-point geometry?  �e 
understanding is that contradictory statements 
cannot both be true of a physical model. �at 
is, a physical state within a model cannot exist 
(true) and not exist (false) at the same time. If it 
appears this way, then it is really only a paradox, 
not a contradiction. For if there really were a 
contradiction, how could the model exist?  �us, 
if an axiomatic system is embedded in a model 
that actually exists, contradictions in the axiomatic 
system are assumed impossible. �e ability to find 
a physical model of a mathematical system leads 
to assurances of consistency of the mathematical 
system.  

What occurs when the consistency of a 
mathematical system is established by using 
models?  By representing a mathematical system 
with a model, we are boldly transferring properties 
in creation to our thinking and reasoning. 

Why should we believe that properties like 
consistency exist in creation?  One answer is that 
God, through his providence, maintains the world 
around us in a consistent, predictable manner. 
“Natural Laws” hold from day to day, resulting 
in many experiences and observations that can 
be relied on. Even experiences and observations 
that are variable have variations that form reliable 
patterns. (Is anything without pattern?) �us, 
the consistency reflected in laws and patterns is a 
reflection of God’s upholding hand in creation. As 
we seek to understand the world around us, we see 
the resulting consistency in creation and transfer 

We shall see that the 
certainty within a 
mathematical system 
is informed by physical 
models, the main point 
being that mathematical 
certainty should be based 
on God’s providential 
and sustaining hand in 
creation.
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this property to our reasoning. �is property, in 
turn, leads to the general belief in the reliability 
of mathematical knowledge. �us, mathematical 
knowledge is ultimately based on God’s providential 
and sustaining hand in creation.

2.2 Multiple Models
�ere may exist more than one model for an 

axiomatic system. For the three-point geometry 
discussed previously, one could have people as 
“points” and committees of two as “lines.” �e 
axioms would hold, as would the derived theorems. 
In our axioms, if one called lines fum’s and points 
fe’s, the results would still be present. �ey would 
just exist in terms of the new, undefined words: 
fum and fe. 

Why bring this up?  �ere are two reasons. 
�e first is that having more than one model for a 
mathematical system leads us to the understanding 
that mathematics contains abstract concepts 
that depend on how you define the terms for 
mathematical objects. �is diversity of models 
allows the same mathematics the ability to describe 
diverse phenomena and allows the transfer of a 
knowledge gain from one model to another. If 
mathematical reasoning were tightly associated 
with individual models, then generalizations to 
other models or situations would be impossible. 

�e movement of ideas between models and 
abstraction can be very subtle. �is subtlety can be 
seen even in very simple things like the meaning of 
two. When two is used as an adjective, it is part of a 
model (i.e., “�ere are two people”). When two is 
used as a noun (2+2=4), you have moved into the 
realm of abstract concepts, into a mathematical 
system. 5

�e second reason to use fum and fe is 
to illustrate  that reasoning and results in a 
mathematical system take place within the human 
mind and need not be associated with tangible 
things. It would be nice, if it were possible, to have 
a model of all abstract concepts and reasoning; 
however, this is not possible.  

For example, our ability to count objects 
(using adjectives—one, two…—that establish 
nouns—one, two…—) and the fact that we can 
always count “one more” leads us to the concept 
of infinity. It’s obviously impossible to physically 
model infinity. �is impossibility makes an 
infinite set, like the set natural numbers which 

are embedded in most mathematical systems, 
impossible to model. Mathematics quickly moves 
beyond the tangible world to the abstract world 
within our minds. As a result, it is not possible to 
determine if even “simple” mathematical systems 
are consistent, since there is no corresponding 
physical model to verify consistency. 

2.3  Summary of Section 2
We can summarize Section 2 as follows:

… the consistency 
re!ected in laws and 
patterns is a re!ection 
of God’s upholding hand 
in creation. As we seek 
to understand the world 
around us, we see the 
resulting consistency 
in creation and 
transfer this property 
to our reasoning. This 
property, in turn, 
leads to the general 
belief in the reliability 
of mathematical 
knowledge. Thus, 
mathematical knowledge 
is ultimately based 
on God’s providential 
and sustaining hand in 
creation.
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assumptions, and these are often related 
to models, since realization of the 
assumptions can give further ideas as to 
what assumptions to add or use.

of a mathematical system, it is assumed 
that everything that is true in the system is 
also true in the physical model.

is certain is based on realizations of 
mathematical assumptions in physical 
models.

models and mathematical knowledge 
which leads us to believe in the reliability 
of mathematical knowledge and reasoning. 
I believe this to be a reflection of God’s 
providential and sustaining hand in 
creation.

concepts, many of which go beyond all 
possible physical models. 

3  !e Mathematical Modeling Process 
We have examined the consistency of physical 

models in the development of mathematical systems 
and a few of the important assumptions that are 
implicit in these models.  We now turn toward the 
thrust of mathematical modeling, that is, the use 
of mathematics to understand the physical world. 
�e “mathematical world” and  “physical world” 
are common to nearly all descriptions of the 
mathematical modeling process.6  While “model” 
in Section 2 referred to a physical realization of 
a mathematical system, “mathematical model” in 
this section refers to a mathematical system that 
describes aspects of the physical world. When I 
refer to the modeling process, what is meant is the 
development of the mathematical system.

3.1  Modeling an Iterative Process
�e modeling process is an iteration scheme, 

where observations in the physical world lead 
to changes in a mathematical description of 
a phenomenon, and “observations” in the 
mathematical world (mathematical results) lead 
to exploring the physical world or to a changed 
understanding of the physical world. �is sounds 
very much  like the interplay between models and 
mathematical systems in Section 2. Let’s consider 

the modeling process in more detail. An outline of 
the process that could easily be found in a textbook 
on mathematical modeling is the following: 

1. Start with a question about a problem that 
you would like to answer. 

2. Isolate important parts of the problem. 
3. Translate your observations into 

mathematics; that is, make your model. 
4. “Do” the mathematics to see what you can 

discover in the mathematical world. 
5. Translate your mathematical results into 

meaning for the physical world. 
6. Validate your model against the physical 

world to see if it is reasonable. 
(a) If the model is validated, ask what 

new truths it reveals about your 
original problem or some particular 
aspect of your problem. 

(b) If your model is not validated,  
re-examine items 2, 3, and 4 and 
modify as needed. 

�e sixth step is iterated (repeated) until the 
modeler is satisfied that the model is sufficiently 
valid for the problem being addressed. While the 
mathematical modeling is being done, the “steps” 
above are generally all mixed up and appear in 
order only when a model is presented!  

In the modeling process, step two is of 
extreme importance. It is, in essence, formulating 
how things interact and determining the primary 
and secondary influences within the problem. 
Rough pictures or caricatures of the problem 
are often drawn to help promote understanding 
during step two. Typically only important parts 
with primary effects are selected for incorporation 
into any mathematical model. If everything about 
the problem is incorporated into the mathematical 
model, the model generally becomes too complex 
to work with. I will say a bit more about the 
effect of simplification when we consider model 
validation in Section 3.3 below.

It is in step two that the modeler makes 
judgments as to what is important by isolating 
various portions of problem. Often these 
judgments will determine the outcomes. Consider 
inter-cellular calcium oscillations. Painting a very 
crude picture of the interacting parts, I’d describe 
the process at the cellular level as something like 
this: a hormone in extra-cellular medium attaches 
itself to a receptor on the cell surface, which in 
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turn triggers some membrane reactions that 
release molecules into the inter-cellular fluid. 
�ese molecules then interact with inter-cellular 
membrane receptors to cause the release of inter-
cellular calcium, which then interacts with the 
membrane and other inter-cellular receptors in a 
manner which makes oscillations possible. �is is 
a complicated process. Depending on your focus 
(cell membrane dynamics, inter-cellular membrane 
dynamics, inter-cellular calcium storage, or 
buffering) you can arrive at multiple models that 
have inter-cellular calcium levels that oscillate.7

Step three is where the building of the 
mathematical model occurs. �e important parts 
of the problem are turned into assumptions. �e 
assumptions are then translated (or embedded) into 
a mathematical framework of some sort (calculus, 
graph theory, algebra, etc.). �e assumptions can be 
based on how individual elements in the physical 

world interact. For example, what happens when 
one particle contacts another?  Is momentum 
transferred?  Do they react in some way?  Or if the 
particles are people, is fear or disease transferred?  
Another option is that the assumptions could be 
based on an aggregate behavior. For example, in a 
fluid with chemicals, you might assume that it is 
well mixed and assume that a certain fraction of 
one chemical interacts with another over a short 
period of time. �is is in contrast to particles 
interacting individually. 

Experienced modelers generally have their 
favorite mathematical concepts or theories for 
translating the assumptions into mathematics. 
Some may prefer to use differential equations, 
others graph theory, others linear algebra. 
Obviously the model will differ, depending on 
the modeler’s choices. �us, any particular model 
reflects the strengths and creativity of the modeler. 
�ere is no one single model of anything.

Once the model is translated into a 
mathematical framework, the results within 
that framework can be applied to see what the 
mathematics reveals. �is process often necessitates 
revisiting the understanding of the problem to 
make adjustments to the assumptions needed by 
the mathematics. With today’s computers, it is 
quite common within the mathematical framework 
to do simulations as a way of suggesting possible 
results. 

Once mathematical results are known, results 
are translated back to the world of the problem. 
For example, knowing the root of a function may 
translate into an optimal efficiency point for a 
process (e.g., how to tune a carburetor to achieve 
maximum fuel efficiency at a particular speed). 

Validation of the model is, in essence, asking 
how well the model corresponds to observables 
within the framework of the original model. 
Does the mathematics describe the observables?  
Does it predict things that can be found in the 
original problem?  If the model does not describe 
what you think is important, then modifications 
in the understanding of the original problem, the 
assumptions, or the translations are needed. 

3.2  !e Correspondence Assumption
 �e claim of Section 2 was that the certainty 
within mathematics is based on physical models, 
the realizations of axioms, or assumptions in the 

The mathematical 
modeling process is an 
iterative scheme by 
which we try to re"ne 
our understanding 
of a physical-world 
phenomenon by 
translating assumptions 
about the phenomenon 
into mathematical 
language where 
mathematical results are 
discovered, which are 
then translated back to a 
physical world meaning. 
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physical world. �e underlying assumption was 
that if the mathematical axioms hold of the model 
being investigated, then all of the results derived 
within the mathematical framework must also hold 
of the model. �e modeling process is dependent 
on the veracity of this assumption. Assuming that 
there is a model that can be validated, the modeler, 
when presented with a model that is not validated, 
assumes that some of the assumptions embedded 
in the mathematical framework were incorrect. 
 �e difference between the ideas of Section 
2 and Section 3 is that in Section 2, we started 
with mathematical assumptions and tried to find 
a physical realization where those assumptions 
were valid. With the modeling process we try 
to find assumptions that fit a physical-world 
problem, assuming that a correspondence between 
a mathematical model and the physical-world 
problem is possible. �e underlying assumption in 
both cases is that there is a tight correspondence 
between the problem realized in the physical world 
and mathematical reasoning in the mathematical 
world. �e mathematical modeler would like 
to believe that the knowledge gained from the 
mathematics helps us understand the complexities 
of the original problem. �at is, if the assumptions 
of the mathematical world and the physical 
realization match, then mathematical reasoning 
will translate into true knowledge of the physical- 
world problem. �is is called the correspondence 
assumption.

3.3  “Wrong” Models
Let’s step back. Consider step two of the modeling 
process again: “Isolate important parts of the 
problem.” �e main objective here is to reduce 
the complexity of the problem. A second, usually 
unstated, objective is to deal with a limited 
understanding of the original problem. If we 
knew exactly how things worked in the physical 
world, why would we be using mathematics to 
gain more understanding?  We might be using 
mathematics to extol the beautiful mathematical 
nature of the world; however, we generally have 
a finite understanding of the process that is being 
modeled, and we seek better understanding of that 
process. 
 �e question arises as to the quality of results 
that are based on approximated or isolated aspects 
of the physical-world problem. In particular, there 

are parts of the physical-world problem that will 
not be part of the mathematical model due to 
simplifying assumptions. Further, there may even 
be assumptions which are not exactly correct. It is 
clear that inherent in the mathematical modeling 
process, errors and approximations abound!  What 
can be learned from a wrong model? 
 Consider the following: A “true” model is one 
that can be perfectly validated, that is, where all 
information in the mathematical model is present 
in the physical model and vice versa. Another way 
to say this is that there is no disagreement between 
observables and mathematical results. It is always 
the case that a true model can be arrived at by 
taking a wrong model (some validation fails) and 
adding corrections. 8 In symbols this looks like 

 T=W+C

where T represents a true model, W the wrong 
model, and C the correction. Factoring out W 
leads to 

T=W( 1+C/W).
 
If C is very small compared to W, that is C/W is 
very close to zero, then the wrong model can be 
considered very close to the true model. �at is 

T  W.

�is simply implies that even if we assume that 
all models are wrong in some regards (almost all 
modelers will agree with this), the wrong model 
will behave in a similar fashion to the true model 
when we are close enough.  Meerschaert, in his 
book Mathematical Modeling, 9 calls this property 
of models robustness. Small changes in the 
mathematical model don’t change the behavior of 
the model, and if we are close enough to the true 
model, the true model’s behavior is describable by 
the wrong model.
 In essence the understanding gained from 
“wrong” models is often close enough to the “true” 
model that we are not faced with a world that 
seems unintelligible and devoid of pattern. Rather, 
we are faced with a world that can be understood. 
How close is close enough?  �is is a decision of 
the modeler and the problem being modeled and, 
thus, depends on the level of detail a modeler 
requires.
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3.4  Summary of Section 3
 We can summarize Section 3 as follows: 

iterative scheme by which we try to refine 
our understanding of a physical-world 
phenomenon by translating assumptions 
about the phenomenon into mathematical 
language where mathematical results are 
discovered, which are then translated back 
to a physical world meaning. 

any given phenomenon. �e type of model 
and details of a model are dependent on 
the choices the modeler makes. 

to true in the physical world, then 
mathematical results of the model will 
transfer to knowledge about the physical 
world. 

phenomena are inherently incorrect, but 
this incorrectness generally does not keep 
them from being useful. 

4  Limitations of Mathematical Models
From the wide-spread use of mathematical 

models, it is evident that Western culture has placed 
a significant amount of trust in the mathematical 
modeling process. Often this trust is bolstered by 
achievements in areas like engineering, medical 
imaging, automobile designing, etc. Mathematical 
modeling has had less success in areas such as 
ecology, human behavior, long-term weather 
forecasting, and in systems where predictability is 
limited to statistical descriptions. In these areas, 
however, there seems to be an increasing reliability 
on the predictive power of mathematical modeling 
and simulation, as the modeling process iterates 
closer to the “true” model. Is it really possible to 
iterate toward the true model? 

In sections 2 and 3, the focus was on the process 
of modeling and on assumptions concerning 
the physical world that allow the building of 
mathematical models. Although there are many 
directions that one could follow when discussing 
the limitations of mathematical models, we will 
limit the discussion to two observations concerning 
the iterative nature of the modeling process. �ese 
observations seek to reduce the magnitude of 
corrections in a model and include an observation 

on the interactive nature of modeling.
�e iterative nature of the modeling process 

is essential, but each iteration is limited. Each 
modeling iteration allows the modeler to integrate 
new information into a model. �is integration is 
often done by changing assumptions or refining 
ranges of parameters within an existing model. 
However, for any given set of assumptions in 
a mathematical model, there is a limit to the 
information that can be contained in the resulting 
mathematical model. �is limit may be unknown 
and large, but a limit still exists. �e real limitation 
is that it is a subjective choice as to how many 
iterations are needed before useful information is 
attained. �at is, when is the wrong model close 
enough to the true model? 

An analogy to linear algebra may be helpful. 
In linear algebra a set of vectors will span a vector 
space. Many interesting things may be waiting to 
be discovered in the vector space ; however, to move 
beyond that particular span of vectors, say into a 
new dimension, one must add other vectors  to 
the original set. Axioms are like the starting set of 
vectors. �ere may be many fruitful results that are 
gained, but to move beyond the span of the axioms 
in other directions for better approximations, one 
must add new axioms or change existing ones  in 
order to explore new dimensions and arrive at 
better approximations. �e problem is when to 
stop tweaking the axioms. �e end of the iterative 
process depends on when the modeler is satisfied 
with the validation process. 

Another limitation inherent in the process 
of mathematical modeling is the adjustment of 
parameter values that occurs as new information 
is discovered about the problem being modeled. 
A parameter is some unknown aspect contained 
in an assumption of the model. Often this is a 
numerical value that is needed if one is to make 
the assumption concrete.

Parameter values used in models usually 
apply only to limited situations. For example, the 
newspaper of the town I live in reports that over 
the last 10 years the town has been growing at 
about seven percent per year. If a modeler on the 
town council used this assumption for planning, it 
would probably be reliable for a few years into the 
future, but if he/she were to plan for 30 years into 
the future, the assumption would not be valid.

�ere are ways around this problem. For 
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example, we could assume that the percentage rate 
of growth is given by an unknown function of time, 
r(t), for which we know only characteristics but 
not specific details. New results could be gained 
from this modification, but again the assumption 
on the characteristics of r(t) would limit the 
knowledge gained for the model. General trends 
may be gained, but specific details are almost 
always lost. �is gain/loss illustrates a general 
property of modeling, which sounds obvious but 
needs to be stated: the more general a model is, the 
less specific it can be. Models that try to predict 
general patterns are often called qualitative, while 
models that predict detailed information, like the 
breaking point of a beam or the length of time 
beach restorations will last, are called quantitative. 

Our final observation is on the interactive 
nature of the modeling process. �e ability of 
the modeler to choose the axioms of a model 
clearly indicates that mathematical models are a 
result of human understanding. Since the process 
relies on human understanding, it is not possible 
a priori to determine which assumptions require 
modification, though after the modification, it 
almost always seems as if the modification was 
just waiting to happen. �is is like the statistician 
saying that the most probable thing to happen is 
what has happened. Essentially, it is not possible 
to anticipate how axioms or parameters within a 
model need to be changed without comparing  the 
model with new data. It is like wandering around 
in the mathematical world with a light shining in 
from the physical world. What you “see” depends 
on your frame of mind and previous experiences. 
Changes in a model during the modeling process 
are in response to human observations, insight, 
and judgment. 

4.1  Summary of Section 4
 We can summarize Section 4 as follows: 

limitation that the axiom system imposes. 
�at is, the results possible are found only 
within the span of the axioms. It is not 
possible to predict beyond the assumption 
of a model. 

is, the less specific its results will be. �is 
is often phrased as a distinction in model 
type: qualitative vs quantitative.

provides is limited to the certainty of human 
observations, insight, and judgment.

5  Conclusion
�e meaning of mathematical knowledge 

ultimately comes from physical realizations of 
mathematical assumptions and extensions of 
observations (e.g., “We can always count one 
more.”). Confidence in the correspondence 
assumption and human insight is the foundational 
element of mathematical modeling. �e underlying 

assumption is that with the correct mathematical 
assumptions, found through human insight, it is 
possible to build a mathematical model that will 
give the modeler further insight into the problem 
being modeled. �e process of mathematical 
modeling embodies interplay among the modeler’s 

Christians are called 
by the Bible to care for 
and develop creation. 
This means that we 
need to understand the 
world around us. One 
way to do this is to 
formulate mathematical 
models. Thus, a 
Christian approach to 
mathematical modeling 
is to understand 
the limitations of 
mathematical models 
and the modeling 
process.



10     Pro Rege—June 2010

knowledge, observations, and assumptions.  
With this interplay in mind, we now ask 

the following question: When the results of 
mathematical models are used to predict outcomes 
or are otherwise relied on, what are we trusting or 
putting faith in?  Here are three of the larger places 
where trust is placed: 

the abilities of programmers if computer 
simulations are used). 

into the model. 

It should be clear that the first two items are prone 
to human limitation, which may result in large 
or small errors. When a result of a mathematical 
model is important, potential error is  mitigated 
by using multiple people to check models and 
assumptions and by comparing results of multiple 
models. �e third item, which underpins the 
others, is an assumption that I believe relies 
on  God’s providential and sustaining hand in 
creation.

�e sin of the mathematical modeler is to 
ignore the basis for the last item and redirect 
glory that is due to God toward human reasoning 
and observation in the first two items. �is is 
particularly true with successful mathematical 
models. How should the Christian modeler who 
professes ultimate faith and trust in God respond?  

Christians are called by the Bible to care for 
and develop creation. �is means that we need to 
understand the world around us. One way to do 
this is to formulate mathematical models. �us, a 
Christian approach to mathematical modeling is to 
understand the limitations of mathematical models 
and the modeling process. Also, when applying 
results, we should act in humility, realizing that 
we are responding to human knowledge gained 
from human observations and human reasoning. 
If mathematical models give results that don’t 
correspond with observations, then we should 
recognize the failings and adapt, not necessarily 
letting the current models or thinking rule our 
responses. �is is not an exclusive response, limited 
to Christians. When mathematical models do 
correspond with observations or reveal previously 
unknown structure, the Christian should give glory 
to God and respond in a manner that is believed to  
honor God further and care for His creation.

�us, unlike the theme of the novel Polar 
Shift, where knowledge of mathematical models 
gives power to manipulate creation for one’s 
own purposes, Christians should recognize that 
knowledge of mathematical models demonstrates 
God’s glory by revealing structure otherwise 
hidden, and their response should be to further 
glorify God in actions and thoughts.
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